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ABSTRACT
BACKGROUND: Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) play critical roles in processing
information related to reward. However, the contribution of ChINs to the emergence of addiction-like behaviors and
its underlying molecular mechanisms remain elusive.
METHODS:We employed cocaine self-administration to identify two mouse subpopulations: susceptible and resilient
to cocaine seeking. We compared the subpopulations for physiological responses with single-unit recording of NAc
ChINs, and for gene expression levels with RNA sequencing of ChINs sorted using fluorescence-activated cell
sorting. To provide evidence for a causal relationship, we manipulated the expression level of dopamine D2

receptor (DRD2) in ChINs in a cell type–specific manner. Using optogenetic activation combined with a double
whole-cell recording, the effect of ChIN-specific DRD2 manipulation on each synaptic input was assessed in NAc
medium spiny neurons in a pathway-specific manner.
RESULTS: Susceptible mice showed higher levels of nosepoke responses under a progressive ratio schedule, and
impairment in extinction and punishment procedures. DRD2 was highly abundant in the NAc ChINs of susceptible
mice. Elevated abundance of DRD2 in NAc ChINs was sufficient and necessary to express high cocaine motivation,
putatively through reduction of ChIN activity during cocaine exposure. DRD2 overexpression in ChINs mimicked
cocaine-induced effects on the dendritic spine density and the ratios of excitatory inputs between two distinct
medium spiny neuron cell types, while DRD2 depletion precluded cocaine-induced synaptic plasticity.
CONCLUSIONS: These findings provide a molecular mechanism for dopaminergic control of NAc ChINs that can
control the susceptibility to cocaine-seeking behavior.

https://doi.org/10.1016/j.biopsych.2020.05.003
Drug addiction is a neuropsychiatric disorder characterized by
compulsive and persistent drug seeking along with excessive
motivation to consume substances. Epidemiologic studies
revealed that only a small subset of the population exposed to
cocaine develops addiction-related symptoms (1,2). Owing to the
socioeconomic burdens of cocaine addiction, the behavioral and
neurobiological changes after exposure to cocaine have been
extensively studied in rodent models for the past several de-
cades. However, the molecular profile of drug addiction and the
cellular mechanism underlying susceptibility to cocaine addiction
remain largely unresolved, in part owing to the lack of reliable
mouse models demonstrating individual differences.

The mesolimbic dopaminergic (DAergic) pathway, which
includes the nucleus accumbens (NAc), is dysregulated in
various states of drug addiction (3). The NAc predominately
comprises medium spiny neurons (MSNs), which are divided
into two subtypes based on expression of different DA re-
ceptor subtypes: DA D1 receptor MSNs (D1-MSNs) and DA D2

receptor MSNs (D2-MSNs). They produce two functionally
distinct outputs of the NAc: D1-MSNs mainly form the direct
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pathway that promotes reward-related behaviors, while
D2-MSNs form the indirect pathway that serves a critical role in
aversion and negative reinforcement (4,5). In the NAc, both
types of MSNs receive excitatory inputs from the basolateral
amygdala (BLA), ventral hippocampus (vHPC), and medial
prefrontal cortex (mPFC). All inputs are capable of inducing
reinforcement (6), but each pathway is independently regulated
after withdrawal from cocaine self-administration (7). However,
the functional distinctions and regulatory mechanisms of these
pathways for cocaine seeking remain elusive.

MSNs can be regulated by several types of striatal in-
terneurons (8,9). A growing body of evidence suggests that
cholinergic interneurons (ChINs) in the NAc might play critical
roles in processing reward- and addiction-related information
(10,11). Despite comprising a minute portion (1%–2%) of the
entire NAc neuronal population, ChIN axonal fields are wide-
spread (12), leading to extensive modulation of a large number
of NAc neurons including MSNs. In fact, cocaine exposure
induces both ChIN activation and acetylcholine (ACh) release
(13), and ablation of NAc ChINs results in an exaggerated
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locomotor response to noncontingent cocaine injections (14).
Consistently, locomotor sensitization is prevented by an in-
crease in NAc ACh levels (15). NAc ChINs also receive direct
inputs from mesolimbic DAergic neurons, which activate
ChINs primarily through glutamate co-release (16). Once acti-
vated by the firing of DAergic neurons, NAc ChIN firing is
paused, which is in part mediated by activation of the DA D2

receptor (DRD2) (17). Conversely, selective activation of NAc
ChINs causes DA release through activation of nicotinic ACh
receptors (nAChRs) expressed on the axonal terminals of
DAergic neurons (18). Given these anatomical and physiolog-
ical observations, modification of NAc ChINs would potentially
control neuronal features and synaptic plasticity of MSNs,
which could consequently contribute to addiction-like
behaviors.

Here, we employed a behavioral paradigm to quantify
motivation for cocaine after extended self-administration in
mice, which allowed for a segregation of subject animals
exhibiting susceptibility versus resilience to cocaine-seeking
behaviors. We also conducted RNA sequencing on isolated
ChINs from the NAc of susceptible and resilient mice to obtain
differential gene expression at the whole transcriptome level,
which indicated that the downstream DRD2 signaling pathway
was upregulated in susceptible animals. To examine the
cellular mechanism and functional impact on cocaine seeking,
we exploited cell type–specific manipulation of DRD2 and then
monitored physiological and behavioral changes. Taken
together, our findings indicate that DRD2 abundance in NAc
ChINs is both necessary and sufficient for development of
susceptibility to cocaine seeking, which is mediated by a
pathway-specific modulation of structural and synaptic plas-
ticity in distinct MSN subtypes.
METHODS AND MATERIALS

For detailed methods, see the Methods and Materials in
Supplement 1. Briefly, wild-type male mice were subjected to
cocaine self-administration (1.2 mg/kg/infusion), which was
conducted for 23 hours/day. After 10 daily progressive ratio
(PR) sessions, the subject mice were divided into susceptible
or resilient groups based on the average breakpoint of the last
3 days. The breakpoint was defined as the number of active
nosepoke respondings to receive the last infusion. Subsets of
mice identified as susceptible or resilient were then subjected
to an extinction or punishment procedure. During 7-day
extinction (1 hour/day), nosepoke responding resulted in no
consequence. Using distinct subsets of mice, the baseline
level of nosepoke response was assessed for 3 days with a
fixed ratio 5 schedule without any presentation of punishment.
For subsequent 3 days, electric foot-shocks were randomly
presented as a punishment, by one-third chance upon each
active nosepoke. Other subsets of susceptible and resilient
mice were employed for in vivo extracellular recording, RNA
sequencing of sorted ChINs, ex vivo slice recordings, or single-
cell reverse transcriptase polymerase chain reaction
experiment.

For cell type–specific manipulations, we used adult male
Chat-Cre or Chat-Cre/Drd2-eGFP double transgenic mice. We
bilaterally injected an adeno-associated virus (AAV) into the NAc,
which allowed for Cre-specific DRD2 overexpression, DRD2
Biological Psych
knockdown, or expression of DREADD (designer receptor
exclusively activated by a designer drug) derived from the kappa
opioid receptor (KORD) (19). For optogenetic experiments, a
channelrhodopsin-2 (ChR2)–expressing AAV was additionally
injected into the mPFC, vHPC, or BLA. After injection, at least a
5-week recovery period was allowed prior to ex vivo patch clamp
recordings, morphological analysis, or behavioral assessments.
To assess postsynaptic current in DRD2 knockdown mice,
cocaine-HCl (15 mg/kg) was intraperitoneally injected for 5
consecutive days, followed by 1-day withdrawal.
RESULTS

Segregation of Susceptible and Resilient Mice by
Behavioral Phenotypes

We sought to divide inbred C57BL/6 mice based on the level of
motivation toward the contingent consumption of cocaine. To
accomplish this, we devised a behavioral paradigm modified
from a self-administration procedure previously used for a
rapid increase in drug motivation in rats (20). The procedure
consists of a fixed ratio 1 schedule for cocaine infusion fol-
lowed by a 10-day PR schedule (Figure 1A). The final break-
points, which were measured as an index of motivation, were
distributed over a wide range, with a local minimum around
breakpoint 32 (Figure 1B). We employed a k-means clustering
analysis using final breakpoints and time-out responding
(Figure S1A in Supplement 1) to systematically separate a
mouse population into high- and low-motivation groups (divi-
sion at breakpoints at 32.33) (Figure 1B). As expected, mice
displaying high motivation showed progressively increasing
levels of responding toward cocaine infusions throughout the
10-day assessment, which was significantly higher than the
low-motivation group (Figure 1C and Figure S1B–E in Sup-
plement 1). Interestingly, the difference in cocaine intake be-
tween groups was undetectable during the initial acquisition
(Figure S1F in Supplement 1), and the initial acquisition effi-
cacy (as measured by the latency to accomplish 40 infusions)
was not predictive of the final measures of motivation
(Figure S1G in Supplement 1).

Consistent with our hypothesis that the motivation index
could represent susceptibility to addiction-related phenotypes,
mice with high motivation exhibited other core addiction-like
behaviors. Compared with the low-motivation animals, the
high-motivation group exhibited higher levels of nosepokes
during random presentation of electric foot-shocks at the time
of each active nosepoke (Figure 1D and Figure S1H, I in
Supplement 1), which indicates drug seeking despite
receiving contingent punishment. Mice in the high-motivation
group also displayed a higher level of seeking behaviors dur-
ing the extinction procedure, as they performed more nose-
pokes than low-motivation mice in the absence of cocaine
infusion (Figure 1E). Finally, mice in the high-motivation group
exhibited more impulsive seeking behaviors than mice in the
low-motivation group, as assessed by the number of nose-
pokes during a postinfusion time-out period (Figure S1J, K in
Supplement 1) (21). Collectively, these behavioral analyses
supported our notion that the high- and low-motivation groups
represented animals that were susceptible and resilient,
respectively, to express addiction-like behaviors.
iatry November 15, 2020; 88:746–757 www.sobp.org/journal 747
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Figure 1. Segregation of mouse populations
based on susceptibility to addiction-like behaviors
after cocaine self-administration. (A) A timeline of
experimental procedure. After initial acquisition and
breakpoint measurement using cocaine self-
administration, a subset of mice were subjected to
an extinction or punishment procedure. (B) A sum-
mary histogram showing final breakpoints that indi-
vidual mice displayed. The dotted line depicts the
borderline breakpoint that divides susceptible and
resilient animals. (C) Daily breakpoints that resilient
(n = 102 mice) and susceptible (n = 56 mice) groups
displayed throughout PR sessions (group 3 time
[F9,495 = 9.12, p , .001]). (D) Relative numbers of
active nosepokes despite random delivery of electric
foot-shocks (group 3 time [F5,40 = 4.11, p , .01];
susceptible: n = 10 mice; resilient: n = 7 mice). (E)
Number of active nosepokes under cocaine un-
availability (group 3 time [F6,72 = 3.51, p , .01];
susceptible: n = 11 mice; resilient: n = 13 mice). (C–
E) Two-way repeated-measures analysis of variance
was used. **p , .01, ***p , .001. Data are presented
as mean 6 SEM. FR, fixed ratio; PR, progressive
ratio.
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Activation of NAc ChINs by Cocaine Infusion Is
Blunted in Susceptible Mice

We recorded NAc ChINs to examine whether and how ChINs
of susceptible and resilient mice responded differently to
systemic cocaine infusion. After catheter implantation and
cocaine self-administration, single-unit recording was con-
ducted from the NAc shell region in vivo (Figure 2A, B and
Figure S2A, B in Supplement 1). The unit activity of putative
ChINs was identified by interspike interval and spike frequency
(10). Consistent with previous reports (13,22), intravenous
infusion of cocaine increased ChIN firing rates in drug-naïve
control mice (Figure 2C). We also observed elevated ChIN
activity in the resilient group (Figure 2D) but failed to detect any
significant alterations of ChIN activity of the susceptible mice
(Figure 2E). Hence, NAc ChIN activity would be affected in
susceptible mice where it could potentially play instructive
roles for progressive ratio responding.

Higher Drd2 Expression in NAc ChINs of
Susceptible Mice

Neural and behavioral plasticity underlying drug addiction are
associated with altered expression of numerous genes in the
NAc (23). To capture those changes on a transcriptome-wide
level, we exploited fluorescence-activated cell sorting to
perform cell type–specific RNA sequencing from NAc ChINs
after completion of the PR schedule (Figure 3A; Figure S3A, B
in Supplement 1; and Table S1 in Supplement 1). As expected,
sorted ChINs expressed a significantly higher level of Chat, a
molecular marker for ChINs, and contained only marginal
748 Biological Psychiatry November 15, 2020; 88:746–757 www.sobp.
levels of messenger RNAs (mRNAs) encoding marker proteins
for other striatal interneuron subtypes and MSNs (Figure 3B).
Differential expression analysis (fold change . 2 and false
discovery rate , .01) identified 2909 differentially expressed
genes (DEGs) in NAc ChINs from susceptible mice compared
with resilient mice. These DEGs were composed of 1685
upregulated genes and 1224 downregulated genes (Figure 3C,
D and Table S2 in Supplement 2). Our DEG analysis also
revealed that the most abundant readouts were transcripts of
protein-coding genes (66.8%), followed by long noncoding
RNAs (12.9%) and pseudogenes (8.3%), with the remaining
categories accounting for 12.1% (Figure S3C in Supplement
1), similar to those of NAc D1- and D2-MSNs (24). However,
there was little overlap of responsive DEGs (only 11 DEGs in
common) between SST (somatostatin)-positive interneurons
and NAc ChINs (Figure S3D in Supplement 1) (25).

KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway analysis of upregulated DEGs in NAc ChINs from
susceptible mice revealed that DAergic signaling was one of
the top three upregulated pathways in susceptible animals
(Figure 3E and Table S3 in Supplement 2). Other highly
affected pathways, including long-term potentiation, endo-
cytosis, and cAMP/cGMP (cyclic adenosine monophosphate/
cyclic guanosine monophosphate) signaling, are also impli-
cated in DAergic signaling (26,27). Gene Ontology terms
related to DAergic signaling, such as cytoskeleton organiza-
tion and small GTPase-mediated signaling, were identified
(Figure 3F) (28,29). Among genes involved in DAergic
signaling, upregulation of Drd2 was of particular interest, as
DRD2s in ChINs are proposed to regulate neuronal activity,
org/journal
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synaptic plasticity, and behaviors (30,31). Also, increased
DRD2 activity, owing to its elevated abundance in ChINs of
susceptible mice, could potentially counteract the cocaine-
triggered activation of ChINs observed in control and resil-
ient mice (Figure 2C).

One of physiological consequences that higher expression of
DRD2 in ChINs can produce would be exaggerated DRD2-
mediated reduction of neuronal activity (30). We perfused a
DRD2 agonist quinpirole onto acute brain slices containing the
NAc and measured spontaneous firing rates of NAc ChINs in a
cell-attached configuration (Figure 4A–C). Quinpirole success-
fully decreased spontaneous activity of NAc ChINs (Figure 4D).
The quinpirole-induced inhibition of ChIN activity was intact
under treatment with a cocktail of synaptic blockers (APV,
DNQX, and picrotoxin), suggesting that the DRD2-mediated
reduction of neuronal activity was independent of synaptic in-
puts (Figure S4A in Supplement 1). To elucidate the possible
correlation between drug motivation and DRD2 abundance in
NAc ChINs, we assessed the final breakpoints from the PR test
and the magnitude of DRD2-mediated inhibition by performing
ex vivo cell-attached recordings (Figure 4A). Importantly, the
magnitude of firing rate reduction by quinpirole positively
correlated with measured breakpoints (Figure 4E). Furthermore,
dispersed levels of DRD2 abundance appeared not to arise from
an innately conferred difference, given that magnitudes of firing
rate reduction were more widely distributed after completing the
PR test, compared with drug-naïve control animals (Figure S4B,
C in Supplement 1). We also measured Drd2 mRNA levels by
quantitative reverse transcriptase polymerase chain reaction with
aspirated intracellular contents of ChINs from mice subjected to
cocaine self-administration (Figure 4A, F and Figure S4D in
Supplement 1). Indeed, single-cell quantitative reverse tran-
scriptase polymerase chain reaction corroborated higher levels
Biological Psych
of Drd2 mRNAs in NAc ChINs of susceptible mice than in those
of resilient mice (Figure 4G).
DRD2 in NAc ChINs Is Sufficient and Necessary for
Cocaine Seeking

To examine whether increased abundance of DRD2 was suf-
ficient to induce addiction-like behavior, we overexpressed
DRD2 by microinjecting Cre-dependent AAV vectors into the
NAc of Chat-Cre mice. We confirmed the selective over-
expression by co-labeling of turboGFP (turbo green fluores-
cent protein) and ChAT (choline acetyltransferase)
(Figure S5A–D in Supplement 1), and validated that firing rates
were further reduced by quinpirole in DRD2-overexpressing
ChINs compared with uninfected control ChINs without
affecting the baseline firing rate (Figure 5A and Figure S5E in
Supplement 1). Importantly, Chat-Cre mice with DRD2 over-
expression in NAc ChINs exhibited higher motivation toward
cocaine infusion than Cre-negative control animals (Figure 5B–E
and Figure S5F, G in Supplement 1). The increased motivation
was unlikely due to reduced anxiety-like behavior, as novelty-
induced suppression of feeding was comparable between the
two groups (Figure S5H in Supplement 1).

To determine whether DRD2 in NAc ChINs was required for
development of addiction-like behaviors, we next depleted
DRD2 in NAc ChINs using a Cre-dependent knockdown AAV
(32). We microinjected Cre-dependent knockdown AAV
expressing a short hairpin RNA against the Drd2 (shDrd2) into
the NAc of Chat-Cre mice (Figure 5F) and confirmed that most
of the ChAT-positive neurons expressed eYFP (enhanced
yellow fluorescent protein), which was coexpressed in cells
expressing shDrd2 (Figure S5I–L in Supplement 1) (32). Using
cell-attached recordings, we validated that DRD2 knockdown
iatry November 15, 2020; 88:746–757 www.sobp.org/journal 749
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(I) an uninfected ChIN and (J) designer receptor derived from the KORD-expressing NAc ChIN. Black lines depict bath application of SalB (100 mM). Scale
bars = 20 mV and 30 seconds. (K) Schematic illustration of breakpoint assessment after bilaterally injecting AAV encoding double-floxed KORD into the NAc of
Chat-Cre or Cre-negative control mice. Cocaine and SalB were injected during the PR schedule. Breakpoints on (L) the first day and (M) the final 7–10 days of
PR tests (control: n = 10 mice; KORD: n = 9 mice). Mann-Whitney U tests were used for comparisons. *p, .05, **p , .01. Data are presented as mean 6 SEM.
AAV, adeno-associated virus; Chat, choline acetyltransferase; ChINs, cholinergic interneurons; DIO, double-floxed inverted orientation; DRD2, dopamine D2

receptor; eYFP, enhanced yellow fluorescent protein; FR, fixed ratio; i.v., intravenous; KORD, kappa opioid receptor; NAc, nucleus accumbens;
n.s., not significant; OE, overexpression; PR, progressive ratio; SalB, salvinorin B; tGFP, turbo green fluorescent protein.
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abolished quinpirole-induced reduction of spontaneous firing
rates in NAc ChINs (Figure 5A and Figure S5E in Supplement 1).
Importantly, mice with depleted DRD2 had significantly lower
motivation toward cocaine infusion than control animals
(Figure 5G, H and Figure S5M, N in Supplement 1). These
findings support the notion that DRD2 in NAc ChINs is sufficient
and necessary for development and maintenance of suscepti-
bility traits to cocaine addiction.
752 Biological Psychiatry November 15, 2020; 88:746–757 www.sobp.
Inactivation of NAc ChINs Leads to Increased Drug
Motivation

DRD2 activation in striatal ChINs induces various physiological
changes, including depression of spontaneous neuronal ac-
tivity, elongation of postburst pause, and disinhibition of Ca21

channels in downstream MSNs (16,30,31). We sought to
determine whether the emergence of addiction-like behaviors
could result from inhibition of NAc ChIN activity induced by
org/journal
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test was used for analysis of paired recordings. **p , .01. AAV, adeno-associated virus; BLA, basolateral amygdala; Chat, choline acetyltransferase; ChINs,
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activation of DRD2. Thus, we inhibited ChIN activity by cell
type–specific expression of KORD and its activation by salvi-
norin B (SalB) administration (19), which is known to exert
minimal effects on endogenous DA receptors (33). We
expressed KORD selectively in NAc ChINs by using a Cre-
dependent AAV vector and Chat-Cre mice, and confirmed
that SalB application suppressed spontaneous activity in AAV-
infected ChINs but had negligible effect on uninfected control
ChINs (Figure 5I, J). Mice expressing KORD in NAc ChINs were
intravenously infused with SalB together with cocaine during
PR tests (Figure 5K). KORD-expressing mice exhibited higher
motivation to cocaine compared with Cre-negative control
mice, who also received SalB during cocaine infusion
(Figure 5L, M and Figure S5O, P in Supplement 1).

DRD2-Induced Behavioral Changes Are
Accompanied by Cell Type–Specific Alteration of
Dendritic Spine Density and Excitatory Inputs of
MSNs

Chronic cocaine exposure can cause morphological changes
in NAc MSNs. Specifically, repeated noncontingent cocaine
injection followed by short withdrawal increased dendritic
spine density in D1-MSNs but not in D2-MSNs (34). Motivation
to cocaine, which was elevated by DRD2 overexpression in
ChINs, would be associated with structural changes of
neighboring NAc MSNs. Consistent with this notion,
D1-MSNs, but not D2-MSNs, exhibited increased spine den-
sity after a cell type–specific overexpression of DRD2 in NAc
ChINs, despite the absence of cocaine injection (Figure 6A, B).

Chronic exposure to cocaine results in altered excitatory
postsynaptic current (EPSC) ratios between D1- and D2-MSNs
Biological Psych
in a pathway-specific manner (35). After cocaine injection,
EPSC ratio of D1-/D2-MSNs increased in the BLA-NAc
pathway, but decreased in the vHPC-NAc pathway, while the
mPFC-NAc pathway remained unaffected (35). Using ChR2-
encoding AAV and Chat-Cre/Drd2-eGFP double transgenic
mice, we monitored impacts of ChIN-specific DRD2 over-
expression on optically driven EPSCs in distinct MSN sub-
types (Figure 6C). In three distinct experiments, ChR2 was
expressed in upstream brain regions of the NAc: the vHPC,
BLA, or mPFC (Figure 6C and Figure S6A in Supplement 1).
Simultaneous whole-cell recording from D1- and D2-MSNs
revealed that the EPSC ratio between two MSN subtypes
was shifted in a pathway-selective fashion after NAc ChIN-
specific DRD2 overexpression in drug-naïve mice. EPSC ra-
tios of D1-/D2-MSNs decreased in the vHPC-NAc pathway
(Figure 6D–F) but increased in the BLA-NAc pathway
(Figure 6G–I), whereas the mPFC-NAc pathway was unaf-
fected (Figure S6B, C in Supplement 1). To further investigate
which component of the EPSCs accounted for DRD2-induced
plasticity, we next assessed quantal EPSCs in bath solutions
containing Sr21 (Figure S6D in Supplement 1). While both
quantal EPSC amplitude and frequency remained unaltered in
the mPFC-NAc pathway (Figure S6E, F in Supplement 1), quantal
EPSC frequency, but not amplitude, was increased in the BLA-
NAc pathway after ChIN-specific DRD2 overexpression
(Figure S6G, H in Supplement 1).

We also examined whether DRD2 in NAc ChINs was
required for cocaine-induced synaptic alterations in the BLA-
NAc and vHPC-NAc pathway, which have been implicated in
cocaine craving and sensitization (6,35,36). DRD2 was selec-
tively depleted in NAc ChINs, and ChR2 was expressed in the
iatry November 15, 2020; 88:746–757 www.sobp.org/journal 753
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vHPC or in the BLA (Figure 7A, E and Figure S7A, B in
Supplement 1). Consistent with a previous report (35), the
Cre-negative control group showed alteration of EPSC ratios
after 5 daily cocaine intraperitoneal injection–attenuated D1/D2

EPSC amplitude ratios in the vHPC-NAc pathway but
increased D1/D2 ratios in the BLA-NAc pathway (Figure 7B, C,
F, G). ESPC ratios in both pathways remained unaffected,
despite cocaine exposure, when DRD2 was depleted
(Figure 7D, H). These data highlight the necessity of DRD2
signaling in ChINs for cocaine-induced synaptic plasticity in
both the vHPC-NAc and BLA-NAc pathways. Interestingly,
mice harboring DRD2 overexpression in NAc ChINs also dis-
played elevated locomotion to noncontingent cocaine admin-
istration, which was apparent from the first exposure to
cocaine (Figure S8A, B in Supplement 1). Collectively,
increased abundance of DRD2 induced synaptic plasticity in
MSNs and subsequently triggered behavioral sensitization,
further substantiating a causal relationship between synaptic
plasticity and drug-related behaviors.

DISCUSSION

Here, we demonstrated that DA signaling in NAc ChINs causally
controls cocaine-seeking behavior. Our genome-wide analysis
of NAc ChINs from susceptible versus resilient animals identified
numerous DEGs that could potentially contribute to the emer-
gence of susceptibility traits after cocaine self-administration.
Among these DEGs, Drd2 was upregulated in susceptible ani-
mals, and it was sufficient and necessary for development of
addiction-like behaviors. We also detected that activation of NAc
ChINs during cocaine exposure was blunted in susceptible
754 Biological Psychiatry November 15, 2020; 88:746–757 www.sobp.
animals, consistent with the observation that chemogenetic
suppression of ChIN activity resulted in elevated drug motiva-
tion. This DRD2/ChIN-mediated behavioral change appeared to
arise primarily because of pathway-specific synaptic plasticity
occurring at MSNs.

By adapting the behavioral paradigm in which rats devel-
oped rapid escalation of drug motivation (20), we could
segregate susceptible and resilient mice within a relatively
short period. The two distinct subpopulations showed a rela-
tively small difference (,15%) of cocaine intake between
subpopulations, together with limited lifetime intake (,250 mg/
kg). Because exposure to high doses of cocaine could affect
release and uptake of DA and consequently alter locomotor
responses even after long-term withdrawal (37), identification
of susceptible and resilient animals based on volitional seeking
with lower cocaine dose may be helpful for investigation of
precise mechanisms underlying susceptibility. We further
validated that the high-motivation group exhibited core
addiction-like behaviors (2). Measurement of each behavioral
phenotype in distinct groups could also exclude possibilities of
repeated extinction, reinstatement, and association of drug-
predicting cues with aversive stimulus, which might affect
NAc neuroplasticity (38).

The individual difference of DRD2 abundance is likely to be
induced during cocaine self-administration, rather than to arise
from innate heterogeneity, not only because we used inbred
mice, but also because magnitudes of quinpirole-induced
depression of ChIN activity were more widely distributed
after completion of the PR schedule. The detailed mechanism
by which DRD2 levels are elevated during cocaine
org/journal
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self-administration still remains to be determined. Importantly,
DRD2 downstream genes comprising both PKA (protein kinase
A)-dependent (Atf4, Creb1, Crebbp, Prkaca) and PKA-
independent (Arrb2, Akt1) signaling pathways were upregu-
lated in NAc ChINs of susceptible mice (Table S2 in
Supplement 2) (39). Moreover, our KEGG pathway analysis
revealed that signaling pathways previously reported to be
altered by exposure to addictive drugs, such as cAMP-PKA-
CREB pathways, were also differentially regulated (40).
Although cocaine-affected genes previously reported using
whole-NAc assessments were conserved in ChINs, by
contrast, further comparison with SST1 interneuron data
showed only little overlapping of responsive DEGs (Figure S3D
in Supplement 1). These results highlight the potential roles of
cell type–specific gene regulation between distinct neuronal
subtypes for addiction susceptibility.

We established a causal relationship between ChIN ac-
tivity and motivation to cocaine using multiple genetic tools
to control DRD2 abundance specifically in NAc ChINs; DRD2
overexpression in NAc ChINs increased motivation to
cocaine and, conversely, DRD2 depletion reduced cocaine-
seeking behavior. These results appear to be at odds,
considering a previous report suggesting reduced reward-like
effect under cocaine-conditioned place preference paired
with and optogenetic silencing of ChINs (22). However, it is
worth emphasizing that genetic tools that we used,
compared with a transient inactivation during single
noncontingent cocaine exposure, allow for DRD2 over-
expression for at least 5 weeks, which by itself results in
MSN synaptic plasticity that could support excessive cocaine
seeking (36). Finally, our single-unit recording data indicated
that cocaine exposure increased ChIN activity in resilient
animals but not in susceptible animals in which the ChIN
DRD2 abundance was upregulated. It is reasonable to
speculate that ChIN activation during cocaine exposure,
which was exhibited by resilient animals, exerts a defensive
action and thereby deters the transition to addictive states
after cocaine consumption.

Activation of ChINs can increase the release of DA in the
NAc by direct activation of nAChRs localized on the axon
terminals of DAergic neurons (18). Reduction of ChIN activity is
likely to induce susceptibility to cocaine seeking, at least in
part through decreased DA release in the NAc, which would
occur because of elongated ChIN pausing (17). It was recently
shown that the phasic DA release independent of DAergic
neuron activity underlies motivation for reward seeking (41),
suggesting the physiological significance of locally induced DA
release in the NAc. Interestingly, ample evidence indicates that
enhanced DA efflux plays a central role in development of
reward-like behaviors elicited by cocaine (3), but it was also
previously demonstrated that DA levels during cocaine intake
diminished after prolonged long-term access to cocaine
(42,43). Simultaneous monitoring of ACh and DA concentra-
tions, along with MSN neuronal activity during drug-seeking
behavior, will make it possible to delineate their subsecond
dynamics, which would be a key regulating factor for synaptic
plasticity and addiction-like behaviors. In fact, because both
muscarinic ACh receptors and DA receptors are G protein
coupled and share downstream signaling pathways, the
crosstalk between these two neurotransmitters could yield
Biological Psych
synergetic or gating effects on signaling molecules critical for
synaptic plasticity (44,45).

One of compelling features in this study is that ChIN-
specific DRD2 overexpression was sufficient to induce
pathway- and cell type–specific synaptic plasticity in MSNs
without cocaine exposure. Importantly, all types of synaptic
plasticity we observed without cocaine treatment were remi-
niscent of the alterations observed in mice that received
repeated cocaine (34,35). Furthermore, ChIN-specific deple-
tion of DRD2 precluded cocaine-induced alteration of EPSC
ratios, indicating a necessary role of ChIN DRD2 for cocaine-
induced synaptic plasticity. In the dorsal striatum, DRD2 ac-
tivity in ChINs was proposed to regulate cell type–specific
synaptic plasticity via activation of muscarinic ACh receptors
in the corticostriatal pathway (31,45). However, the effects of
ChIN DRD2 and presynaptic muscarinic ACh receptors on
MSN plasticity have not been fully addressed in the other
pathways, especially in the NAc. It is possible that the BLA-
NAc and vHPC-NAc circuits can be distinctly regulated by a
single signaling pathway, as it has been shown for other types
of presynaptic G protein–coupled receptors such as KORDs
(46). Furthermore, while it was widely documented that
GABAergic (gamma-aminobutyric acidergic) regulation of
neuronal activity or spike timing can affect synaptic plasticity
(47), effects of ChIN-induced multisynaptic inhibitory trans-
mission (8) on MSN plasticity still remain elusive. Therefore,
unraveling the molecular crosstalk and antagonistic in-
teractions among distinct neuronal subtypes and differential
cholinergic actions in the NAc will provide new insight into the
mechanisms of cocaine addiction.
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